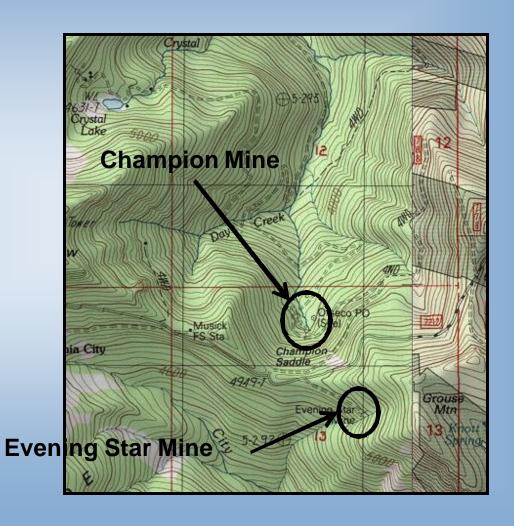


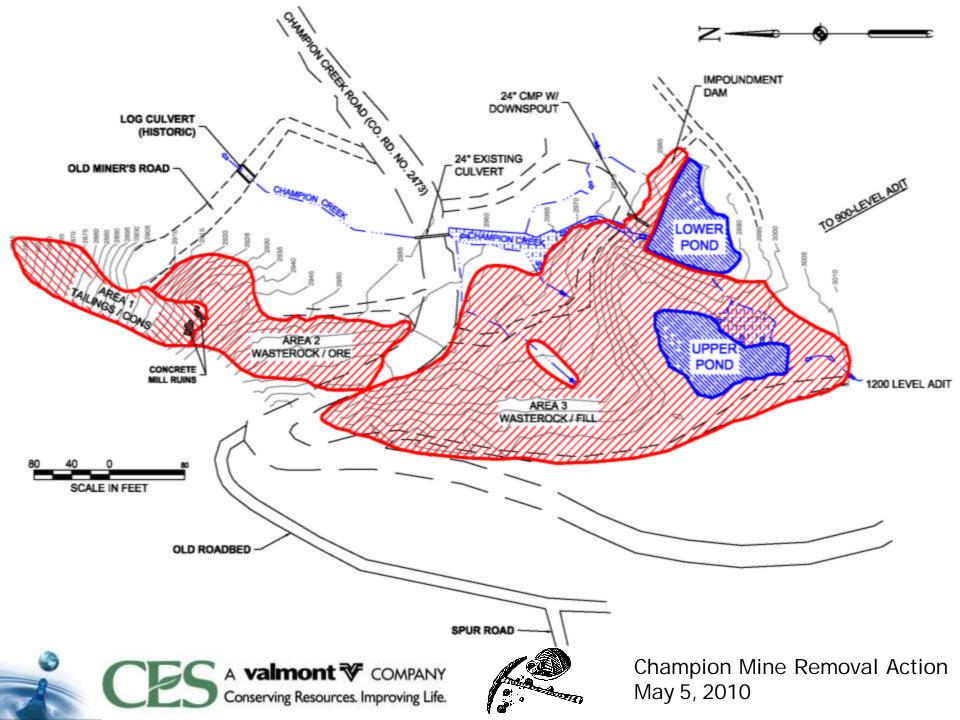
Champion Mine History

- Abandoned Underground Gold Mine
- Umpqua National Forest / Bohemian Mining District, OR
- History
 - 1892 1942 Main Production (EO L208)
 - 1945 1962 Minor Production
 - 30-stamp mill (1902)
 - 100-ton flotation mill (1939)
 - Average Grades 0.55 OPT Au / 4.21 OPT Ag
 - Total Production 50,000 Tons
- 9 Levels Total, 3 Main Levels (900 1,050 1,200)
 - 15,000 feet total workings / Very stable
 - Main Haulage Adit (1,200-Level) is Headwater of Champion Creek





Champion Mine Location


Champion Mine Setting

- Adjacent to County Road / High Recreational Use
- 4,400 Feet Elevation
- 40% Average Slope
- 47-inches Precipitation
- Heavily Vegetation
- Failing Ponds
 - 2 Ponds Late 70's by Forest Service
 - Lower Pond is breached
- 40,000+ CY Waste Material
 - 3 Main Waste Areas
 - Mainly Waste Rock
 - Minor Tailings/Concentrates

Main Haulage (1,200-Level) Adit - Before

Waste Rock Piles and Ponds - Before

Waste Rock and Seeps Below Ponds - Before

Upper Pond - Before

A **valmont ₹** COMPANY

Conserving Resources. Improving Life.

Lower Pond - Before

Champion Mine Removal Action May 5, 2010

Champion Mill Foundations - Before

Project Overview / Timeline

- Preliminary Assessment USFS in 2002
- Site Inspection (SI) EA in 2003
- Engineering Evaluation/Cost Analysis (EE/CA) CES in 2004
 - EE/CA Data Gap Investigation CES in 2004/2005
- Removal Action
 - Awarded to CES in 2006 / Design-Build Contract
 - DGI (Workings, Wetlands, Topo)
 - Year 1 (2007) Pond Dewatering/ Earthwork
 - Year 2 (2008) Earthwork and Reclamation
 - Year 3 (2009) Wetlands, Revegetation

A valmont **₹** COMPANY

Conserving Resources. Improving Life.

Post Removal Action Monitoring – 2008 to 2014

EE/CA Overview

- Main Haulage Adit (1,200) Headwater of Champion Creek
 - Flow = 300 gpm
 - Interior has pH ~ 3 su / Neutral at ~ Portal
 - ? COCs (AI, As, Cu, Fe, Pb, and Zn)
- Failing Ponds
 - Ponds build from waste rock, unknown amount of sludge
 - Numerous seeps
- Waste Rock Piles, minor amounts of Tailings/Cons
 - Total Volume ~ 40,000+ CY in 3 Main Areas
 - pH Down to 2.8 su / ? COCs (As, Cu, Fe, Pb, and Zn)
 - Slight ARD Potential (ABP +6 to -30 t CaCO₃/Kt)
 - Overall SPLP results indicate minimal leaching
 - One TCLP Failure for Pb (Bevill Exclusion)

EE/CA Overview (cont.)

- Risk Assessment Human and Ecological
 - No Noncarcinogenic Risks
 - Arsenic Carcinogenic Risks (Worst Case Receptor)
 - Eco Risks to Terrestrial and Aquatic Receptors
 - Risk-Based Cleanup Goal 85 mg/kg Arsenic in Waste Material
- Removal Action Goals
 - Reduce Exposure to COCs in Waste Material
 - Reduce Erosion of COCs into Surface Water
 - Retain Historical Features, When Practical
- 3 Alternatives (No Action, Onsite, and Offsite)
- Preferred Alternative Onsite Repositories with Wetland

Removal Action Data Gap Investigation

- Additional Champion Creek Sampling
- Wetland Delineation
- Topographic Survey
- Lower Pond Breach Repair
- Underground Workings Assessment 1,200 Level
 - Mapping Load Sources, Quality, and Mass
 - Evaluate Potential For Segregation and Separate Treatment

Lower Pond Repair

- Original Adit Door
- Opening & Draining
- Build A Dam
- Install DataLogger
- Monitor Q&Q

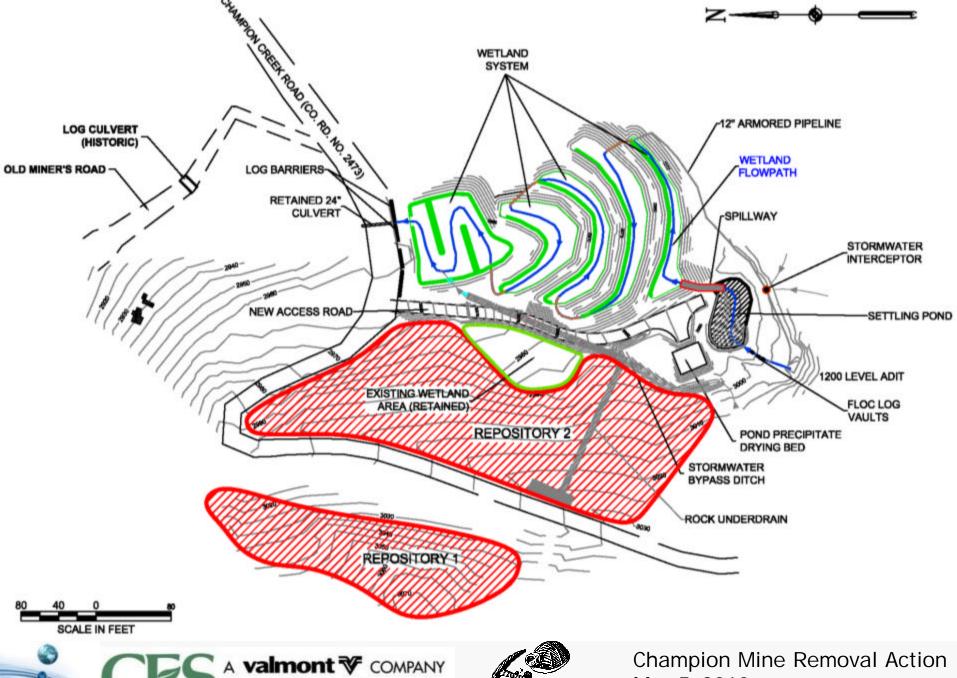
Mapping

1,200 Level Reservoir

1,200 Level Sublevel Shaft

Underground Workings Assessment

- Conclusions
 - The Majority of Flow from the Main Fault/Vein Near Faces
 - Acid (pH = 2.8-3.8 su) Discharging from Several Small Stopes at the Midpoint
 - Alkaline Seeps Neutralize Flow Before the Portal
- Bottom Line Segregation Not Worth Cost & Maintenance!


Removal Action Plan (3 Years)

- Step 1 Main Haulage Adit / Champion Creek Diversion, and Erosion Control
- Step 2 Pond Dewatering, and Sludge Mixing, Drying, and Stockpiling
- Step 3 Cover Soil Borrow Area Development
- Step 4 Onsite Repositories and Grading
- Step 5 Wetland, with Settling Pond & Polymer Addition
- Step 6 Cleanup and Debris Removal
- Step 7 Revegetation/Reclamation

Conserving Resources. Improving Life.

May 5, 2010

1,200-Level Drainage / Champion Creek Diversion

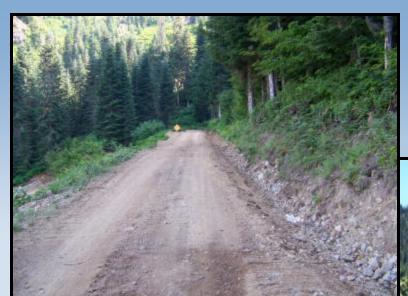
Pond System Removal/ Sludge Dewatering

A **valmont ₹** COMPANY

Conserving Resources. Improving Life.

Dealing with the Wet Material

Cover Soil Borrow Area / Repository 1


Repository 1 Placement and Compaction

- 1. Repository Underdrain to Wetland
- 2. Regrade Road above Repository
- 3. Remove/Redirect Ditch Relief Culverts

Repository 2 – Keeping It Dry

Repository 2 Construction

Repository 2 Construction

Wetland Design Concepts

- Pretreatment Flocculation w/ Polymer Addition
 - "Floc-Logs" Applied Polymer Systems
- Settling Pond
 - Sludge removal, drying, and placement in Repository 2.
 - Every 10 years
- 5-Tiered Aerobic Wetland
- Wetland Mitigation (1:1 Goal under CERCLA)
 - Before 1 acre of wetlands
 - Retained 0.25 acre wetland, added 1.25 acre
 - Achieved 1.5:1

Floc-Log Vaults and Settling Pond

Wetland Construction

Revegetation / Reclamation

- Repositories and Disturbed Areas
 - Repositories Minimum 24-inches Cover Soil
 - Access Roads Ripped to 2-feet
 - Seed / Fertilizer / Woodstraw™
 - Slash and Trees Scattered Parallel to Slope
 - 1,000 Douglas Fir 2-Year Seedlings on Repositories
- Wetlands Slopes and Terraces
 - Red Elderberry and Service Berry (Slopes)
 - Willows (Terrace Edges)
 - Various Wetland Plants and Sod (Terraces) Transplanted from nearby FS-selected source

Champion Mine -B\feetere

Champion Mine - Béfere

Champion Mine Removal Action May 5, 2010

Constructed Wetland - After

Mill Area - After

Champion Mine Removal Action May 5, 2010

Downslope Mill Area - After

Repository 2 - After

Panoramic View of Repository 2 and Constructed Wetlands Fall 2009

Post Removal Action Monitoring

- Spring 2010 Inspection May 17th
- CES to conduct 4 more years of annual surface water and sediment sampling for main COCs.
- Forest Service to maintain Floc-Log replacement, on a semi-annual to annual basis.
- Forest Service to assess BioChar test plots.
 - FS Objective, can BioChar help restore high elevation wetlands, Forest Service to monitor over the years.

PROJECT ACKNOWLEDGEMENTS

Region 6 Forest Service

Pete Jones – Oregon Regional COR/OSC Dennis Boles (Retired) – COR/OSC Local Umpqua FS Resource Staff

CES Team

Tim Otis, John Martin, Bob Lambeth, Ryan Tobias, MaryAnn Amann, and Dustin Wasley

Contractor

Munitor Construction - Portland

900-Level Mine Operators

Dick and Duck Secord

